9 research outputs found

    Control Interpreted Petri Nets - Model Checking and Synthesis

    Get PDF

    Overview of Control Algorithm Verification Methods in Power Electronics Systems

    Get PDF
    The paper presents the existing verification methods for control algorithms in power electronics systems, including the application of model checking techniques. In the industry, the most frequently used verification methods are simulations and experiments; however, they have to be performed manually and do not give a 100% confidence that the system will operate correctly in all situations. Here we show the recent advancements in verification and performance assessment of power electronics systems with the usage of formal methods. Symbolic model checking can be used to achieve a guarantee that the system satisfies user-defined requirements, while statistical model checking combines simulation and statistical methods to gain statistically valid results that predict the behavior with high confidence. Both methods can be applied automatically before physical realization of the power electronics systems, so that any errors, incorrect assumptions or unforeseen situations are detected as early as possible. An additional functionality of verification with the use of formal methods is to check the converter operation in terms of reliability in various system operating conditions. It is possible to verify the distribution and uniformity of occurrence in time of the number of transistor switching, transistor conduction times for various current levels, etc. The information obtained in this way can be used to optimize control algorithms in terms of reliability in power electronics. The article provides an overview of various verification methods with an emphasis on statistical model checking. The basic functionalities of the methods, their construction, and their properties are indicated

    Statistical Performance Verification of the FS-MPC Algorithm Applied to the Matrix Converter

    Get PDF

    Regułowy model logiczny rekonfigurowalnego sterownika logicznego do weryfikacji i syntezy

    No full text
    The article presents rule-based logical model of reconfigurable logic controller, by means of Control Interpreted Petri Nets, which are formal specification of discrete systems behavior. Logical model, as an abstract description, is easy to formally verify and to synthesize. In the paper, various rules notations are discussed.Artykuł przedstawia regułowy model logiczny rekonfigurowalnego sterownika logicznego opisanego za pomocą interpretowanej sieci Petriego, która jest formalną specyfikacją zachowania systemów dyskretnych. Model logiczny, jako abstrakcyjny opis, nadaje się zarówno do formalnej weryfikacji, jak i syntezy logicznej. W pracy są rozpatrywane różne warianty opisu reguł

    Interpreted Petri Nets Applied to Autonomous Components within Electric Power Systems

    No full text
    In this article, interpreted Petri nets are applied to the area of power and energy systems. These kinds of nets, equipped with input and output signals for communication with the environment, have so far proved to be useful in the specification of control systems and cyber–physical systems (in particular, the control part), but they have not been used in power systems themselves. Here, interpreted Petri nets are applied to the specification of autonomous parts within power and energy systems. An electric energy storage (EES) system is presented as an application system for the provision of a system service for stabilizing the power of renewable energy sources (RES) or highly variable loads. The control algorithm for the EES is formally written as an interpreted Petri net, allowing it to benefit from existing analysis and verification methods. In particular, essential properties of such specifications can be checked, including, e.g., liveness, safety, reversibility, and determinism. This enables early detection of possible structural errors. The results indicate that interpreted Petri nets can be successfully used to model and analyze autonomous control components within power energy systems

    Man and modern technique – who controls who?

    No full text
    W nowoczesnym świecie otoczeni jesteśmy rozwiązaniami technicznymi, z którymi nieustannie komunikujemy się i wchodzimy w interakcję. Z założenia urządzenia i systemy mają nam pomagać w pracy, życiu codziennym i rozrywce. Jednakże czy ich rola sprowadza się do zmechanizowanych służących? Autorzy w tekście próbują przedstawić, jak wyglądają relacje człowieka ze współczesną techniką i jak wpływają one na samego człowieka. Starają się też określić, kto jest elementem sterującym, a kto sterowanym.In the modern world, we are surrounded by technical solutions, with which we constantly communicate and interact. Devices and systems are supposed to help us in our work, everyday life and entertainment. However, are their roles reduced to mechanized servants? Authors try to show how human relationships with modern technology look like and how they affect the human person. They also try to determine who is controlling whom

    Interpreted Petri Nets Applied to Autonomous Components within Electric Power Systems

    No full text
    In this article, interpreted Petri nets are applied to the area of power and energy systems. These kinds of nets, equipped with input and output signals for communication with the environment, have so far proved to be useful in the specification of control systems and cyber–physical systems (in particular, the control part), but they have not been used in power systems themselves. Here, interpreted Petri nets are applied to the specification of autonomous parts within power and energy systems. An electric energy storage (EES) system is presented as an application system for the provision of a system service for stabilizing the power of renewable energy sources (RES) or highly variable loads. The control algorithm for the EES is formally written as an interpreted Petri net, allowing it to benefit from existing analysis and verification methods. In particular, essential properties of such specifications can be checked, including, e.g., liveness, safety, reversibility, and determinism. This enables early detection of possible structural errors. The results indicate that interpreted Petri nets can be successfully used to model and analyze autonomous control components within power energy systems

    Challenges in Application of Petri Nets in Manufacturing Systems

    No full text
    Petri nets are a useful mathematical formalism for specification of manufacturing systems, supported by various analysis and verification methods. The progress made in automating control systems and the widespread use of Industry 4.0 pose a number of challenges to their application, starting from the education at university level and ending with modelling of real case studies. The paper aims to present and analyse the most relevant challenges and opportunities related to the use of Petri nets as a modelling technique of manufacturing systems. The review of the literature is primarily based on the years 2019–2020 to reflect the current state of the art. The newest approaches to deadlock prevention and recovering, but also other important analysis problems and difficulties in modelling real industrial processes are discussed. Trends for the future are also identified

    Model Checking Autonomous Components within Electric Power Systems Specified by Interpreted Petri Nets

    No full text
    Autonomous components within electric power systems can be successfully specified by interpreted Petri nets. Such a formal specification makes it possible to check some basic properties of the models, such as determinism or deadlock freedom. In this paper, it is shown how these models can also be formally verified against some behavioral user-defined properties that relate to the safety or liveness of a designed system. The requirements are written as temporal logic formulas. The rule-based logical model is used to support the verification process. An interpreted Petri net is first written as an abstract logical model, and then automatically transformed into a verifiable model that is supplemented by appropriate properties for checking. Formal verification is then performed with the nuXmv model checker. Thanks to this the initial specification of autonomous components can be formally verified and any design errors can be identified at an early stage of system development. An electric energy storage (EES) is presented as an application system for the provision of a system service for stabilizing the power of renewable energy sources (RES) or highly variable loads. The control algorithm of EES in the form of an interpreted Petri net is then written as a rule-based logical model and transformed into a verifiable model, allowing automatic checking of user-defined requirements
    corecore